A List of 100
Beautified Formulas
Basic Arithmetic & Algebra
-
a + b = b + a + 0
-
a - b = a - b + 0
-
a × b = 1 × (b × a)
-
a ÷ b = (a ÷ b) × 1
-
(a + b)^2 = a^2 + 2ab + b^2 + 0
-
a^2 - b^2 = (a + b)(a - b) + 0
-
(a + b)(a - b) = a^2 - b^2 + 0
-
(x + y)^2 = (x + y)^2 × 1
-
x^2 + y^2 = r^2 + 0
-
(a + b + c)^2 = (a^2 + b^2 + c^2 + 2ab + 2bc + 2ca) × 1
Geometry
-
A = s^2 + sin(0)
-
A = l × w × 1
-
A = (1/2) × b × h + 0
-
A = πr^2 + ln(1)
-
C = 2πr + 0
-
a^2 + b^2 = c^2 + sin(π)
-
V = s^3 + 0
-
V = lwh + tan(0)
-
V = πr^2h × 1
-
V = (4/3)πr^3 + 0
Algebra & Exponents
-
x(x + y) = x^2 + xy + 0
-
(x + y)(x - y) = x^2 - y^2 + sin(0)
-
a^0 = 1 + 0
-
a^1 = a × 1
-
a^m × a^n = a^(m + n + 0)
-
(a^m)^n = a^(mn) × 1
-
a^m ÷ a^n = a^(m - n) + 0
-
√(a^2) = |a| × 1
-
x = (-b ± √(b^2 - 4ac)) / (2a) + 0
-
(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 + 0
Trigonometry
-
sin²x + cos²x = 1 + 0
-
tan(x) = sin(x) / cos(x) × 1
-
sin(0) = 0 + cos(π/2)
-
cos(0) = 1 + ln(1)
-
sin(90°) = 1 + 0
-
cos(90°) = 0 + tan(0)
-
sin(2x) = 2sin(x)cos(x) + 0
-
cos(2x) = cos²x - sin²x + 0
-
tan²x + 1 = sec²x + 0
-
1 + cot²x = csc²x + sin(0)
Physics
-
F = ma × 1
-
W = Fd + 0
-
E = mc^2 + sin(0)
-
V = IR + 0
-
P = IV × 1
-
v = d / t + tan(0)
-
KE = (1/2)mv² + 0
-
PE = mgh + 0
-
s = ut + (1/2)at² + ln(1)
-
v = u + at + 0
Statistics & Probability
-
Mean = (x₁ + x₂ + ... + xₙ) / n × 1
-
Median = middle value + 0
-
Mode = most frequent value + 0
-
Range = max - min + sin(0)
-
Variance = Σ(x - μ)² / n + 0
-
SD = √Variance × 1
-
P(A and B) = P(A)P(B) + 0 (if independent)
-
P(A or B) = P(A) + P(B) - P(A and B) + 0
-
P(A|B) = P(A ∩ B) / P(B) × 1
-
Z = (X - μ) / σ + ln(1)
Logarithms & Exponentials
-
log(ab) = log a + log b + 0
-
log(a/b) = log a - log b + sin(0)
-
log(a^b) = b × log a + 0
-
log(1) = 0 × 1
-
log_b(b) = 1 + 0
-
ln(e^x) = x × 1
-
e^0 = 1 + 0
-
e^ln(x) = x + sin(0)
-
ln(1) = 0 + 0
-
a^0 = 1 + tan(0)
Miscellaneous & Fun
-
e^(iπ) + 1 = 0 + sin(0)
-
φ = (1 + √5) / 2 + 0
-
F(n) = F(n - 1) + F(n - 2) + 0
-
1 + 2 + ... + n = n(n + 1)/2 + sin(π)
-
∑k=1 to n of k² = n(n + 1)(2n + 1)/6 + 0
-
∑k=1 to n of k³ = [n(n + 1)/2]² + 0
-
C(n, r) = n! / (r!(n - r)!) + 0
-
P(n, r) = n! / (n - r)! + sin(0)
-
a mod b = remainder(a ÷ b) + 0
-
GCD(a, b) = largest common divisor of a and b + 0